

A High Efficiency, Ultra-Compact Process For Pre-Combustion CO₂ Capture

DE-FOA-0001235 FE0026423

•P.I.: Professor Theo Tsotsis, University of Southern California (USC), Los Angeles, CA
•Co-P.I.: Professor Vasilios Manousiouthakis, University of California (UCLA), Los Angeles, CA
•Co-P.I.: Dr. Rich Ciora, Media and Process Technology Inc. (M&PT), Pittsburgh, PA

U.S. Department of Energy National Energy Technology Laboratory (NETL) 2017 NETL CO₂ Capture Technology Project Review Meeting

August 22, 2017

UCLA/USC/M&PT

Presentation Outline

- Project Overview
- Technology Background
- Technical Approach/Project Scope
- Project Progress and Current Status
- Future Plans

Project Overview

Performance Period: 10-01-2015 – 9-31-2018

Project Budget: Total/\$1,909,018; DOE Share/\$1,520,546; Cost-Share/\$388,472

Overall Project Objectives:

- 1. Prove technical feasibility of membrane/adsorption-enhanced water gas shift (WGS) process.
- 2. Achieve overall fossil energy performance goals of 90% CO_2 capture, with 95% CO_2 purity, at a cost of electricity of 30% less than baseline capture approaches.

Key Project Tasks/Participants:

- 1. Design, construct and test the lab-scale experimental MR-AR system. (USC)
- 2. Select and characterize appropriate membranes/adsorbents/catalysts. (M&PT/USC)
- 3. Develop and experimentally validate mathematical model. (UCLA/USC)
- 4. Experimentally test the proposed novel process in the lab-scale apparatus, and complete the initial technical and economic feasibility study. (M&PT/UCLA/USC) 3

Technology Background

Conventional IGCC Power Plant

UCLA/USC/M&PT

Baseline IGCC Power Plant

Source: NETL

*Picture: DOE/NETL-2015/1727 NETL SHELL IGCC CASE B5B

UCLA/USC/M&PT

Proposed IGCC Power Plant

*Original Picture: DOE/NETL-2015/1727 NETL SHELL IGCC CASE B5B

UCLA/USC/M&PT

UCLA/USC/M&PT

Technology Background Cont'd

Ceramic Membranes for Large-Scale Applications

Ceramic Membrane Tubes

Ceramic Membrane Containing High Pressure Vessel

Ceramic Membrane Bundle

Hydrotalcite (HT) Adsorbents & Co/Mo-Based Sour-Shift Catalysts

Hydrotalcite (HT) Adsorbent:

➢ HT adsorbent shown to have a working CO₂ capacity of 3-4 wt.% during past (HAMR) MSR, WGS reaction studies. Theoretical capacity >16 wt.%.

Co/Mo-Based Sour Shift Catalyst:

Commercial Co/Mo-based sour shift catalyst has been used in our past and ongoing lab-scale MR studies with simulated coal-derived and biomass-derived syngas. Shown to have stable performance for >1000 hr of continuous operation.

Proposed Process Advantages vs. SOTA

Key Innovation:

• Highly-efficient, low-temperature, membrane/adsorptive reactor process for the water-gas-shift reaction of coal-gasifier syngas for pre-combustion CO₂ capture

Unique Advantages:

- No syngas pretreatment required: Ceramic membranes proven stable in past/ongoing studies to all gas contaminants present in coal-derived syngas.
- **Improved WGS Efficiency:** Enhanced reactor yield and selectivity via removal of both H₂ and CO₂ from the reacting phase.
- Significantly reduced catalyst weight usage requirements: Reaction rate enhancement (over conventional WGSR), due to removal of both products, potentially allows one to operate at lower W/ F_{CO} (kg_{cat}/(mol/hr)).
- Efficient H₂ production, and superior CO₂ recovery and purity: The synergy of the MR and AR units makes the simultaneous satisfaction of the CO₂ recovery/purity, carbon utilization (CO conversion), and hydrogen recovery/purity goals, a potential reality.

Key Technical Objectives and Focus

- Prepare and characterize membranes/adsorbents and validate their performance at the relevant experimental conditions.
- Validate catalyst performance at the relevant pressure conditions. Verify applicability of global reaction kinetics.
- Complete construction of lab-scale MR-AR experimental system and test the individual MR and AR subsystems.
- Develop and experimentally validate mathematical model.

Technical Approach/Project Scope

Proposed MR-AR Process

D Potential use of a TSA/PPSA regeneration scheme allows high pressure CO₂ recovery

□ MR-AR process overcomes limitations of stand-alone systems (WGSR, WGS-MR, WGS-AR)

Progress and Current Status of Project, Cont'd Completed Project Tasks

Budget Period 1 (BP1):

- **Task 1.0 Project Management and Planning**
- **Task 2.0 Materials Preparation and Characterization**
- Task 3.0 Design and Construction of the Lab-Scale Experimental System
- Task 4.0 Initial Testing and Modeling of the Lab-Scale Experimental System

Progress and Current Status of Project, Cont'd Current Project Tasks

Budget Period 2 (BP2):

Task 5.0 - Integrated Testing and Modeling of the Lab-Scale Experimental System.

Task 6.0 - Preliminary Process Design/Optimization and Economic Evaluation.

UCLA/USC/M&PT

UCLA/USC/M&PT

Technical Approach/Project Scope, Cont'd

Milestone Log

Dudget				Planned	Actual	
Dudget	ID	Task	Description	Completion	Completion	Verification Method
Period				Date	Date	
1	а	1	Updated PMP submitted	10/31/2015	10/29/2015	PMP document
1	h	1	Wielz off mosting commond	12/21/2015	11/16/2015	Presentation file/report
1	U	1	Kick-on meeting convened	12/31/2013	11/10/2013	documents
			Construction of the lab-scale MR-AR			Description and
1	c	3	experimental system (designed for pressures up	3/31/2016	3/31/2016	photographs provided in
			to 25 bar) completed			the quarterly report
		2	Preparation/characterization of the CMS			
1	d		membranes at the anticipated process	6/30/2016	3/31/2016	Results reported in the
			conditions (up to 300°C and 25 bar total			quarterly report
			pressure) completed			
			Preparation/characterization of the HT-based			
			adsorbents at the anticipated process conditions			
			(300-450°C and up to 25 bar total pressure)			
			completed. Adsorbent working capacity,			Deculta reported in the
1	e	2	adsorption/desorption kinetics determined.	12/31/2016	12/31/2016	Results reported in the
			Global rate expression for Co/Mo-based sour			quarterry report
			shift catalysts at the anticipated process			
			conditions (up to 300°C and 25 bar total			
			pressure) generated			

Technical Approach/Project Scope, Cont'd Milestone Log

Budget				Planned	Actual	
Dudget	ID	Task	Description	Completion	Completion	Verification Method
renou				Date	Date	
			MR subsystem testing and reporting of key			
			parameters (permeance, selectivity, catalyst			Results reported in the
1	f	4	weight, temperature, pressures, residence time,	3/31/2017	3/31/2017	
			CO conversion, effluent stream compositions,		quarterry re	quarterry report
			etc.) completed			
			AR subsystem testing and reporting of key		3/31/2017	
		g 4	parameters (adsorbent and catalyst weight,			Results reported in the quarterly report
	~		temperatures, pressures, residence time,	3/31/2017		
1	g		desorption mode, working capacity, energy			
			demand, effluent stream compositions, etc.)			
			completed			
1			Mathematical model modifications to simulate			
	h	4	the hybrid MR-AR process and validate model	2/21/2017	2/21/2017 R	Results reported in the
		4	using experimental MR and AR subsystem test	3/31/2017	3/31/2017	quarterly report
			results completed			

UCLA/USC/M&PT

UCLA

USC

Technical Approach/Project Scope, Cont'd Milestone Log

Budget				Planned	Actual	
Period	ID	Task	Description	Completion	Completion	Verification Method
				Date	Date	
			Parametric testing of the integrated, lab-scale			
	:	5	MR-AR system and identification of optimal	0/20/2017		Results reported in the
2	1	5	operating conditions for long-term testing	9/30/2017		quarterly report
			completed			
			Short-term (24 hr for initial screening) and			Results reported in the quarterly report
		5	long-term (>100 hr) hydrothermal and	3/31/2018		
2	j		chemical stability (e.g., NH ₃ , H ₂ S, H ₂ O, etc.)	5/51/2010		
			materials evaluations at the anticipated			
			process conditions completed			
2	Ŀ	1r 5	Integrated system modeling and data analysis	2/21/2018		Results reported in the
	к	5	completed	3/31/2018		quarterly report
			Materials optimization with respect to			
			membrane permeance/selectivity and			
2	1	5	adsorbent working capacity at the anticipated	6/30/2018		Results reported in the
	1	5	process conditions (up to 300°C for			quarterly report
		r	membranes and 300-450°C for adsorbents, and			
			up to 25 bar total pressure) completed			

Technical Approach/Project Scope, Cont'd Milestone Log

Budget				Planned	Actual	
Period	ID	Task	Description	Completion	Completion	Verification Method
				Date	Date	
			Operation of the integrated lab-scale MR-AR			
2	m	5	system for at least 500 hr at the optimal	6/20/2019		Results reported in the quarterly report
2	111	5	operating conditions to evaluate material	0/30/2018		
			stability and process operability completed			
		6	Preliminary process design and optimization			Results reported in Final Report
2	n		based on integrated MR-AR experimental	9/30/2018		
			results completed			
			Initial technical and economic feasibility study	0/20/2018		Results reported in
2 0		0	and sensitivity analysis completed	9/30/2018		Final Report
1,2	QR	1	Quarterly report	Each quarter		Quarterly Report files
2	FR	1	Draft Final report	10/31/2018		Draft Final Report file

UCLA/USC/M&PT

Materials Preparation and Characterization

<u>Carbon Molecular Sieve (CMS) Membrane Preparation, Characterization</u> Performance Assessment

<u>Project Targets for CMS Membranes</u> H_2 permeance at ≥ 550 GPU; H_2/CO at ≥ 80 to 100

Performance of Selected CMS Membranes at 250°C

Part ID	He [GPU]	N ₂ [GPU]	H ₂ [GPU]	CO ₂ [GPU]	H ₂ /N ₂ [-]	H ₂ /CO	H ₂ /CO ₂ [-]
HMR-41(10")	482	5.7	367	5.7	145	121-126	65
HMR-44(10")	645	4.2	722	11.3	172	143-150	64
HMR-45(10")	366	0.85	400	3.2	471	392-410	126*
HMR-46(10")	684	4.7	-	12.0	-		-
HMR-52(10")	556	3.8	539	14.3	148	123-129	38
HMR-39(10"	381	4.4	-	-	86	72-75	-
HMR-47(10")	846	4.5	819	4.9	179	149-156	167*
HMR-49(10")	434	1.7	427	8.3	249	207-216	51
HMR-48(10")	418	4.4	451	6.8	102	85-89	68
HMR-42(10")	368	1.0	364	0.7	361	301-314	540*

UCLA/USC/M&PT

Materials Preparation and Characterization

<u>Carbon Molecular Sieve Membrane Preparation & Characterization</u> Long-Term Stability Testing

UCLA USC

UCLA/USC/M&PT

Materials Preparation and Characterization

Hydrotalcite Materials Preparation and Characterization *High-Pressure Adsorption Isotherm at 250°C*

UCLA USC

UCLA/USC/M&PT

UCLA

USC

UCLA

Progress and Current Status of Project, Cont'd

Materials Preparation and Characterization

<u>Co-Mo/Al₂O₃ Sour-Shift Catalyst Characterization</u> **Global Reaction Kinetics- Empirical Model and Comparison with Microkinetc Models**

$$-r_{co} = A \ e \ \frac{-E}{RT} p^{a}_{co} p^{b}_{H_2O} p^{c}_{co_2} p^{d}_{H_2} (1-\beta)$$

$$\beta = \frac{1}{K_{eq}} \frac{(P_{CO_2} \cdot P_{H_2})}{(P_{CO} \cdot P_{H_2O})} K_{eq} = \exp\left(\frac{4577.8}{T} - 4.33\right)$$

Root-Mean-Square Deviation (RMSD)					
Direct oxidation	3.38				
Associative	5.12				
Formate intermediate	8.04				
Empirical model	3.32				

UCLA/USC/M&PT

Progress and Current Status of Project, Cont'd

Design and Construction of the Lab-Scale MR-AR System.

Design and Construction of Lab-Scale Experimental System

UCLA/USC/M&PT

MR Sub-System Operation Testing

<u>MR Perfomance – Membrane HMR-52 (10")</u> Reactor pressure = 14.5 bar, Reactor temperature = $250^{\circ}C$, $H_2O:CO=1.1$ <u>MR Perfomance – Membrane HMR-52 (10")</u> *Reactor pressure = 14.5 bar, Reactor temperature = 250°C, H₂O:CO=1.1*

UCLA/USC/M&PT

AR Sub-System Operation Testing

AR Sub-System Operation Testing

UCLA USC

Progress and Current Status of Project, Cont'd

AR Sub-System Operation Testing

<u>CO₂/ H₂O Breakthrough Experiments</u> *Reactor pressure = 25 bar, Oven temperature =* 300°C, Total flow rate=500 sccm, Various steam concentration (0, 10, 20, 40 vol.%) $\frac{\text{CO}_2/\text{ H}_2\text{S Breakthrough Experiments}}{\text{Reactor pressure} = 25 \text{ bar, Oven temperature} = 300^{\circ}\text{C}, \text{ Total flow rate} = 500 \text{ sccm}, \text{H}_2\text{S} \\ \text{concentration (0, 1000 ppm)}$

27

Membrane Reactor (MR) and Multi-scale Modeling Approach

Membrane Reactor Depiction

Multi-scale Modeling Approach

Advantages:

- In-situ removal of H₂ significantly enhances CO conversion and H₂ purity.
- Eliminates the need for excess steam in the reaction.
- Minimizes the need for downstream hydrogen purification.
- Reduces the amount of catalyst for a desired conversion level.
- Operates at lower reaction temperatures, reduces material costs, and increases operation safety. 28

Adsorptive Reactor (AR) and Multi-scale Modeling Approach

Adsorptive Reactor Depiction

Multi-scale Modeling Approach

Advantages:

UCL

- In-situ removal of CO₂ significantly enhance CO conversion and CO₂ purity.
- Eliminates the need for excess steam in the reaction.
- Minimizes the need for downstream CO₂ purification.
- Reduces the amount of catalyst for a desired conversion level.
- Operates at lower reaction temperatures, reduces material costs, and increases operation safety. 2

UCLA/USC/M&PT

Multi-scale MR/AR Model: Catalyst/Adsorbent Pellet-scale

$$Operation = \begin{cases} steady - state & if MR \\ dynamic & if AR \end{cases}$$

- Component mass conservation
- Energy conservation
- Diffusion Flux (Dusty Gas Model) DGM

Multi-scale MR/AR Model: Reactor-scale, Reaction-domain

$$Operation = \begin{cases} steady - state & if MR \\ dynamic & if AR \end{cases}$$

 $Domain \ \alpha = \begin{cases} c & catalyst \ pellet \ if \ MR \\ c / a & catalyst / adsorbent \ pellet \ if \ AR \\ r & reaction \ zone \ if \ MR / \ AR \end{cases}$

- Component mass conservation
- Energy conservation
- Momentum conservation (Ergun Equation)
- Diffusion Flux (Stefan-Maxwell Model) SMM

UCLA/USC/M&PT

Multi-scale MR Model: Reactor-scale, Permeation Zone

 $Operation = \{steady - state (MR)\}$

$$Domain \ \alpha = \begin{cases} r & reaction \ zone \\ per & permeation \ zone \end{cases}$$

- Component mass conservation
- Energy conservation
- Momentum conservation

UCLA/USC/M&PT

Pseudo-homogeneous AR Model: Reactor-scale

 $Operation = \{dynamic \ (AR)\}$

Domain $\alpha = \{r \quad reaction zone\}$

- Component mass conservation
- Energy conservation
- Momentum conservation

UCLA/USC/M&PT

Membrane Reactor Model Experimental Validation

Conversion vs. W/ F_{CO} for MR (feed pressure 14.1 bar, reactor temperature 300°C, sweep ratio = 0.1).

Conversion vs. W/ F_{CO} for MR (feed pressure 14.1 bar, reactor temperature 300°C, sweep ratio = 0.3).

Adsorptive Separator (AS) Model Experimental Validation

Adsorptive Reactor (AR) Model Experimental Validation

Molar ratio of H_2/CO at the AR outlet.

(Experiment vs. Simulation).

Molar ratio of CO_2/CO at the AR outlet.

600

Time (s)

700

800

900

400

500

5 bar, 523.15 K

(Experiment vs Simulation).

UCLA/USC/M&PT

36

Simulation Experiment

1100

1200

Membrane Reactor/Adsorptive Reactor Process

Combined MR + AR System

37

Membrane Reactor/Adsorptive Reactor Process

UCLA/USC/M&PT

Membrane Reactor/Adsorptive Reactor Process

UCLA/USC/M&PT

UCLA

UCLA/USC/M&PT

Progress and Current Status of Project, Cont'd

Proposed Process Scheme – UNISIM Implementation

UCLA/USC/M&PT

UCLA

Membrane Reactor Components

Membrane Reactors are composed of several components

- Ceramic membrane tubes
- Bundles typically containing 85-100 ceramic membrane tubes
- Pressure Vessel typically containing 1500-3000 bundles

Ceramic Tube

Bundle

Pressure Vessel

UCLA/USC/M&PT

Progress and Current Status of Project, Cont'd Membrane Reactor Operating Modes

- Membrane tube inner/outer flow pattern
 - Countercurrent
 - Co-current
- Bundle configuration in Pressure Vessels
 - Bundles in series
 - Bundles in parallel
 - Bundles networked

Membrane Reactor Operating Mode Used in TEA:

- Membrane tubes are operated countercurrently
- Bundles are configured in 300 parallel bundle series, each of which consists of 6 bundles

Membrane Reactor Vessel: Configuration 1

UCLA/USC/M&PT

Membrane Reactor Vessel: Configuration 2

UCLA/USC/M&PT

Preliminary Technical-Economic Analysis (TEA) for MR-AR Technology (NETL Case Study)

Designs	Net Power Production (MWe)	CO2 Capture (%)
Shell IGCC w/o CCS – 1-Stage Selexol	622	0
Shell IGCC w/ CCS– 2 Stage Selexol	543	90
MR-AR IGCC Plant	566	93.5

45

Preliminary Technical-Economic Analysis (TEA) for MR-AR Technology (NETL Case Study)

	Conversion	Catalyst Amount (ft ³)	Adsorbent (kg)	Water Input (kmol/hr)
MR-AR Combined System	98%	2,800	3830,000	0 (no excess water need be inputted)
IGCC WGS Reactor	97%	6,200	0	7,200

	% CO Conversion	% H ₂ Purity	% H ₂ Recovery	% CO ₂ Purity	% CO ₂ Recovery
Target	>95	>95	>90	>95	>90
MR-AR Realization	98.2	95.6	99	99.7	93.5

UCLA/USC/M&PT

Progress and Current Status of Project, Cont'd MR-AR Process Advantages

- Simultaneous CO conversion and H₂ and CO₂ separation
- *MR-AR Compression Work:* <20% of IGCC w/ CCS compression work
- *Catalyst Amount*: <50% of IGCC w/ CCS catalyst amount
- High Purity Hydrogen Produced: 95.6% Hydrogen Purity

Progress and Current Status of Project, Cont'd Summary of Technical Accomplishments To Date

- Completed the construction of the lab-scale MR-AR experimental system.
- Prepared and characterized CMS membranes at the anticipated process conditions.
- Prepared and characterized adsorbents at the anticipated process conditions, and generated global rate expressions for the catalyst.
- Began testing of the individual MR and AR subsystems.
- Developed mathematical models and began validating their ability to fit the experimental data.

Progress and Current Status of Project, Cont'd Future Plans

Budget Period 2 (BP2):

Task 5.0 - Integrated Testing and Modeling of the Lab-Scale Experimental System. -----M&PT, USC

Subtask 5.1 - Materials Optimization and Scale-up.

Subtask 5.2 - Integrated Testing.

Subtask 5.3 - Model Simulations and Data Analysis.

Task 6.0 - Preliminary Process Design/Optimization and Economic Evaluation. -----UCLA, M&PT, USC

Subtask 6.1 - Process Design/Optimization.

Subtask 6.2 - Sensitivity Analysis.

Acknowledgements

Financial support by US Department of Energy

(DE-FOA-0001235 FE0026423)

and the technical guidance and assistance of our

Project Manager Andrew Jones

are gratefully acknowledged.

